

Seminar at MPR, March 16, 2023

Cyber Security of SCADA, Substations, and Distribution Systems

Chen-Ching Liu American Electric Power Professor Director, Power and Energy Center Virginia Tech

Sponsored by U.S. National Science Foundation, Department of Energy, Commonwealth Cyber Initiative (CCI), VA

Cyber Attack in Ukraine's Power System

- Attack on Ukraine's power grid
 - December 23, 2015.
 - □ Malware installation.
 - □ Falsify SCADA data injection.
 - □ Flood attack on telephone system.
 - Trip circuit breakers in multiple substations.
- Results
 - Over 225,000 customers
 experienced power outage.

Source: Google map

Escalating Cyber Security Factors

- Adoption of standardized technologies with known vulnerabilities
- Connectivity of control systems to other networks
- Constraints on use of existing security technologies and practices
- Insecure remote connections
- Widespread availability of technical information about control systems

Cyber Systems in Power Infrastructure

Cyber Security Standard for Supervisory Control and Data Acquisition (SCADA) NERC CIP 002-014

- OC2 Critical asset identification (e.g. RTU, which support the reliable operation of a power system.)
- Security management controls (e.g. How to manage the authentication, card or password, or both.)
- Personnel training (e.g. Contrators and vendor must be authorized to gain access (cyber and physical), and training staff on security awareness.)
- **O05** Electronic security perimeter (e.g. Periphery to protect all the cyber asset within.)
- OD6 Physical security of critical cyber assets (e.g. Control policies on people who are authorized to have access to the critical cyber assets.)
- **007** System security management (e.g. Monitoring system events)
- Incident reporting and response planning (e.g. Report to related authorities if necessary)
- **OO9** Recovery plans for critical cyber assets (e.g. When threat is over, recover the system and enhance the control policies)
- 010 Configuration change management and vulnerability assessments
- 011 Information protection
- 012 Communications between control centers
- 013 Supply chain risk management
- 014 Physical security

North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection

System Vulnerability

- A system is defined as the wide area interconnected, IPbased computer communication networks linking the control center and substations-level networks
- System vulnerability is the maximum vulnerability level over a set of scenarios represented by I

$$V_S = \max(V(I))$$

* C. W. Ten, C. C. Liu, M. Govindarasu, "Vulnerability Assessment of Cybersecurity for SCADA Systems," *IEEE Trans. Power Systems*, Nov. 2008, pp. 1836-1846.

Access Point Vulnerability

- Access point provides the port services to establish a connection for an intruder to penetrate SCADA computer systems
- Vulnerability of a scenario i, V(i), through an access point is evaluated to determine its potential damage
- Scenario vulnerability weighted sum of the potential damages over the set S

$$V(i) = \sum_{j \in S} \pi_j \times \gamma_j$$

where π_j is the steady state probability that a SCADA system is attacked through a specific access point *j*, which is linked to the SCADA system. The damage factor, γ_j , represents the level of damage on a power system when a substation is removed

Firewall Model

Modeling Integrated Cyber-Power System

- Methodology for CPS modeling of power systems
 - Develop the ICT model of SCADA system
 - Integrate power grid model with ICT model for SCADA and grid control hierarchy
 - Dynamics of a power grid and its data infrastructure are combined
- CPS tool used for assessment of SCADA communication performance
 - Plan SCADA and ICT systems for power grids

• CPS tool used for cyber security assessment in co-simulation environment

- Model cyber attacks and assess CPS security
 - Simulate cyber attacks at the cyber system layer
 - Perform impact analysis at the power system layer
 - Compute impact indices and attack efficiencies to disrupt power grid operation

^{*} A. Stefanov, C. C. Liu, M. Govindarasu, "Modeling and Vulnerability Assessment of Integrated Cyber-Power Systems," *Int. Transactions on Electrical Energy Systems*, Vol. 25, No. 3, March 2015, pp. 498-519.

Integrated Cyber-Power System Model

Impact on Power System - Dynamics

Cyber-Physical Security Assessment

> Impact of the cyber attack is assessed by monitoring the dynamic behavior:

- frequency
- bus voltage magnitudes
- current levels on network elements
- loss of loads

- Secure state
- Insecure state
- Emergency state
- > The most critical attack path is identified based on the attack's efficiency

$$\beta_{j} = \beta_{f,j} + \beta_{P_{L,j}} + \beta_{U,j} + \beta_{L,j}$$

$$= \gamma_{f} \frac{|\Delta f|}{\Delta f_{rated}} + \gamma_{P} \sum_{i=1}^{n_{Loads}} \frac{\Delta P_{L,i}}{P_{initial,i}} + \gamma_{U} \sum_{i=1}^{n_{bus}} \frac{|\Delta U_{i}|}{\Delta U_{rated}} + \gamma_{I} \sum_{i=1}^{n_{branch}} \frac{I_{i}}{I_{rated,i}}$$

Potential Threats in a Substation Based on IEC 61850

Generic Object-Oriented Substation Events (GOOSE) Based Attack

Action	Result
Disconnect Ethernet cable from IED	Lost availability of IED
Send normal control	Open CB
Replay attack	Open CB
Modify sequence & state number	Warning occurred at CB
Modify transferred time	Warning occurred at CB
Modify GOOSE control data	Open CB
Denial of Service attack	Lost availability of CB
Generate GOOSE control data	Open CB

Integration of Cyber-Power System Tools

Vulnerabilities: Cyber Attacks on SCADA/Substations

Integrated Cyber-Power System Model

Anomaly Detection System (ADS) at Substations

• J. Hong, C. C. Liu, M. Govindarasu, "Integrated Anomaly Detection for Cyber Security of the Substations," *IEEE Trans. Smart Grid*, July 2014, pp. 1643-1653.

Measurement-Based Attacks **IEC 61850 Substations**

- Stage 1: From vendors' network
 - Malicious code injected into source code of firmware or updates
- Stage 2: From substation
 - Malicious firmware/updates are downloaded
 - Backdoors are installed at the devices (red boxes in the figure)
- Stage 3: From remote access
 - Steal signing keys/certifications
 - Attempt to access IEDs through backdoor
- Stage 4: Attack act

•

- Steal sensitive information
- Falsify the configuration of IEDs
- Inject malicious measurements from substation level

Measurement Attacks at Substations

- Falsified measurements from substations may mislead system operators
- Control center IDS cannot detect measurement-based attacks before it compromises state estimation
- Specification-based IDS cannot detect falsified measurements in payload of the packets

Electric Circuit Laws for IDS

Measurement	IDS rules
S	
	Kirchhoff`s Current Law (KCL):
Current	$ \sum i_{exit} - \sum i_{enter} $
	$\leq k_{cer1} i_1 + \dots + k_{cern} i_n $
Voltage	Kirchhoff`s Voltage Law (KVL):
	$ v_1 + \dots + v_n \leq k_{ver1} v_1 + \dots +$
	$k_{vern} v_n $
Voltage and	Ohm`s Law:
Current	$\left v_{j}-v_{k}-i_{jk}Z_{line}\right $
	$\leq \max\{k_{verj} v_j , k_{verk} v_k , k_{cerjk} i_j \}$

Measurement errors from CT/VT and merging units are included. k_{ceri} , k_{veri} are the coefficients in the accuracy class for CT_i, VT_i .

Distributed Architecture of IDS

- Communication between substations for measurement cross check
- Proposed distributed IDS uses IDSIEC/TR 61850-90-5 for secure transmission of synchrophasor data between different LANs
- Each distributed IDS analyzes the measurements based on time stamps of the packets

Simulation Results: Detection Time (DT)

- DT distribution of single-bus attacks is close to that of two-bus attacks: the proposed IDS checks the consistency of measurements in a *distributed* manner
- For a broad range of attacks, the median DT falls under 0.025s.

Potential Attacks on Remote Controlled Switches

Implementation on the Testbed at WSU

Tripping the breaker (No defense)

Successful defense

Remarks

- Supply chain attacks in the context of substations and potential attack vectors.
- A comprehensive *cyber* system restoration strategy should be studied so that it can recover the cyber system of substations, control center, and SCADA communication network from cyber attacks.
- A distributed intelligence environment enabled by a Distributed Information System (DIS) in the distribution systems.

Further Information

[1] Cyber Physical Systems Approach to Smart Electric Power Grid, Eds. S. Khaitan, J. D. McCalley, C. C. Liu, Springer 2015.

[2] C. W. Ten, C. C. Liu, M. Govindarasu, "Vulnerability Assessment of Cybersecurity for SCADA Systems," *IEEE Trans. Power Systems*, Nov. 2008, pp. 1836-1846.

[3] S. Pudar, M. Govindarasu, C. C. Liu, "PENET: A Practical Method and Tool for Integrated Modeling of Security Attacks and Countermeasures," *Computers and Security*, Elsevier, 28, Nov. 2009, pp. 754-771.

[4] C. W. Ten, M. Govindarasu, C. C. Liu, "Cybersecurity for Critical Infrastructures: Attack and Defense Modeling," *IEEE Trans. Systems, Man, and Cybernetics*, Vol. 40, No. 4, July 2010, pp. 853-865.

[5] C. W. Ten, J. Hong, C. C. Liu, "Anomaly Detection for Cybersecurity of the Substations," *IEEE Trans. Smart Grid*, Dec 2011, pp. 865-873.

[6] J. Hong, C. C. Liu, M. Govindarasu, "Integrated Anomaly Detection for Cyber Security of the Substations," *IEEE Trans. Smart Grid*, July 2014, pp. 1643-1653.

[7] A. Stefanov, C. C. Liu, M. Govindarasu, "Modeling and Vulnerability Assessment of Integrated Cyber-Power Systems," *Int. Transactions on Electrical Energy Systems*, Vol. 25, No. 3, March 2015, pp. 498-519.

[8] J. Xie, A. Stefanov, C. C. Liu, "Physical and Cyber Security in a Smart Grid Environment," *Wiley Interdisciplinary Reviews Energy and Environment, WIREs Energy Environ* 2016. DOI: 10.1002/wene.202

[9] Y. Chen, J. Hong, C. C. Liu, "Modeling of Intrusion and Defense for Assessment of Cyber Security at Power Substations," *IEEE Trans. Smart Grid*, July 2018, pp. 2541-2552.

[10] C. C. Sun, A. Hahn, C. C. Liu, "Cyber Security of a Power Grid," Int. J. Electrical Power and Energy Systems, Jan 2018, pp. 45-56.

[11] J. Hong and C. C. Liu, "Intelligent Electronic Devices with Collaborative Intrusion Detection Systems," *IEEE Trans. Smart Grid.* Jan 2019, pp. 271-281.

[12] J. Appiah-Kubi and C. C. Liu, "Decentralized Intrusion Prevention (DIP) against Coordinated Cyberattacks on Distribution Systems," *IEEE Open Access Journal of Power and Energy*, 2020.

[13] R. Zhu, C.C. Liu, J. Hong, J. Wang, "Intrusion Detection Against MMS-Based Measurement Attacks at Digital Substations," *IEEE Access*, vol. 9, pp. 1240-1249, 2021